服务热线:13988889999

站内公告:

诚信为本:市场永远在变,诚信永远不变。
【深度学习】优化器(optimizer)

你的位置: 首页 > 杏悦新闻

【深度学习】优化器(optimizer)

2024-04-07 23:24:38  点击量:

以下是使用 PyTorch 实现的深度学习优化器 Ranger 的代码: ```python import math from torch.optim.optimizer import Optimizer import torch.optim as optim class Ranger(Optimizer): def __init__(self, params, lr=1e-3, alpha=0.5, k=6, N_sma_threshhold=5, betas=(0.95, 0.999), eps=1e-5, weight_decay=0): defaults=dict(lr=lr, alpha=alpha, k=k, N_sma_threshhold=N_sma_threshhold, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults) def __setstate__(self, state): super().__setstate__(state) def step(self, closure=None): loss=None if closure is not None: loss=closure() # Gradient centralization for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad=p.grad.data if grad.is_sparse: raise RuntimeError('Ranger optimizer does not support sparse gradients') grad_data=grad.data if len(grad_data.shape) > 1: mean=torch.mean(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) var=torch.var(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) grad_data=(grad_data - mean) / (torch.sqrt(var) + group['eps']) p.grad.data=grad_data # Perform optimization step beta1, beta2=group['betas'] N_sma_threshhold=group['N_sma_threshhold'] grad_ema_beta=1 - beta1 sqr_ema_beta=1 - beta2 step_size=group['lr'] eps=group['eps'] k=group['k'] alpha=group['alpha'] weight_decay=group['weight_decay'] for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad=p.grad.data if grad.is_sparse: raise RuntimeError('Ranger optimizer does not support sparse gradients') state=self.state[p] # State initialization if len(state)==0: state['step']=0 state['exp_avg']=torch.zeros_like(p.data) state['exp_avg_sq']=torch.zeros_like(p.data) state['SMA']=0 exp_avg, exp_avg_sq=state['exp_avg'], state['exp_avg_sq'] SMA=state['SMA'] state['step'] +=1 # Gradient centralization grad_data=grad.data if len(grad_data.shape) > 1: mean=torch.mean(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) var=torch.var(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) grad_data=(grad_data - mean) / (torch.sqrt(var) + eps) grad=grad_data bias_correction1=1 - beta1 ** state['step'] bias_correction2=1 - beta2 ** state['step'] step_size=step_size * math.sqrt(bias_correction2) / bias_correction1 # Compute exponential moving average of gradient and squared gradient exp_avg=beta1 * exp_avg + grad_ema_beta * grad exp_avg_sq=beta2 * exp_avg_sq + sqr_ema_beta * grad * grad # Compute SMA SMA_prev=SMA SMA=alpha * SMA + (1 - alpha) * exp_avg_sq.mean() # Update parameters if state['step'] <=k: # Warmup p.data.add_(-step_size * exp_avg / (torch.sqrt(exp_avg_sq) + eps)) else: if SMA > SMA_prev or state['step'] <=N_sma_threshhold: # If SMA is increasing, skip lookahead and perform RAdam step denom=torch.sqrt(exp_avg_sq) + eps p.data.add_(-step_size * exp_avg / denom) else: # Lookahead slow_state=state['slow_buffer'] if len(slow_state)==0: slow_state['step']=0 slow_state['exp_avg']=torch.zeros_like(p.data) slow_state['exp_avg_sq']=torch.zeros_like(p.data) slow_state['SMA']=0 for key in state.keys(): if key !='slow_buffer': slow_state[key]=state[key].clone() slow_exp_avg, slow_exp_avg_sq=slow_state['exp_avg'], slow_state['exp_avg_sq'] slow_SMA=slow_state['SMA'] slow_state['step'] +=1 # Gradient centralization grad_data=grad.data if len(grad_data.shape) > 1: mean=torch.mean(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) var=torch.var(grad_data, dim=tuple(range(1, len(grad_data.shape))), keepdim=True) grad_data=(grad_data - mean) / (torch.sqrt(var) + eps) grad=grad_data # Compute exponential moving average of gradient and squared gradient slow_exp_avg=beta1 * slow_exp_avg + grad_ema_beta * grad slow_exp_avg_sq=beta2 * slow_exp_avg_sq + sqr_ema_beta * grad * grad # Compute SMA slow_SMA_prev=slow_SMA slow_SMA=alpha * slow_SMA + (1 - alpha) * slow_exp_avg_sq.mean() # Update parameters if slow_state['step'] <=k: # Warmup pass else: if slow_SMA > slow_SMA_prev or slow_state['step'] <=N_sma_threshhold: # If SMA is increasing, skip lookahead and perform RAdam step denom=torch.sqrt(slow_exp_avg_sq) + eps p.data.add_(-step_size * slow_exp_avg / denom) else: # Lookahead p.data.add_(-step_size * (exp_avg + slow_exp_avg) / (2 * torch.sqrt((beta2 * exp_avg_sq + sqr_ema_beta * slow_exp_avg_sq) / (1 - bias_correction2 ** state['step'])) + eps)) # Weight decay if weight_decay !=0: p.data.add_(-step_size * weight_decay * p.data) return loss ``` 以上的代码实现了 Ranger 优化器,其中包括了 RAdam 和 LookAhead 的结合,以及动态学习率和权重衰减等技巧。可以将其应用于 PyTorch 中的深度学习模型训练中。

首页 |杏悦介绍 |杏悦展示 |杏悦新闻 |杏悦登录 |杏悦代理 |杏悦招商 |杏悦平台 |杏悦APP下载 |联系我们

13988889999

Copyright © 2012-2018 首页-杏悦-杏悦注册站 版权所有

地址:海南省海口市玉沙路58号电话:0898-88889999手机:13988889999

ICP备案编号:琼ICP备88889999号

微信扫一扫

微信扫一扫

>

平台注册入口