服务热线:13988889999

站内公告:

诚信为本:市场永远在变,诚信永远不变。
RELIABILITY-BASED TOPOLOGY OPTIMIZATION OF FAIL-SAFE STRUCTURES USING RESPONSE SURFACE METHOD

你的位置: 首页 > 杏悦新闻

RELIABILITY-BASED TOPOLOGY OPTIMIZATION OF FAIL-SAFE STRUCTURES USING RESPONSE SURFACE METHOD

2024-04-07 23:24:26  点击量:

[1]

Jansen M, Lombaert G, Schevenels M, et al. Topology optimization of fail-safe structures using a simplified local damage model. Structural and Multidisciplinary Optimization, 2014, 49(4): 657-666 doi: 10.1007/s00158-013-1001-y

[2]

Zhou M, Fleury R. Fail-safe topology optimization. Structural and Multidisciplinary Optimization, 2016, 54(7): 1225-1243

[3]

彭细荣, 隋允康. 考虑破损-安全的连续体结构拓扑优化 ICM 方法. 力学学报, 2018, 50(3): 611-621 (Peng Xirong, Sui Yunkang. ICM method for fail-safe topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621 (in Chinese) doi: 10.6052/0459-1879-17-366

Peng Xirong, Sui Yunkang. ICM method for fail-safe topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 611-621(in Chinese) doi: 10.6052/0459-1879-17-366

[4]

彭细荣, 隋允康. 破损?安全拓扑优化的局部破损模式参数影响分析. 计算力学学报, 2019, 36(3): 317-323 (Peng Xirong, Sui Yunkang. Parameter effect analysis of local failure modes for fail-safe topology optimization. Chinese Journal of Computational Mechanics, 2019, 36(3): 317-323 (in Chinese) doi: 10.7511/jslx20180201001

Peng Xirong, Sui Yunkang. Parameter effect analysis of local failure modes for fail-safe topology optimization. Chinese Journal of Computational Mechanics, 2019, 36(3): 317-323(in Chinese) doi: 10.7511/jslx20180201001

[5]

Stolpe M. Fail-safe truss topology optimization. Structural and Multidisciplinary Optimization, 2019, 60(4): 1605-1618 doi: 10.1007/s00158-019-02295-7

[6]

Lüdeker JK, Kriegesmann B. Fail-safe optimization of beam structures. Journal of Computational Design and Engineering, 2019, 6(3): 260-268 doi: 10.1016/j.jcde.2019.01.004

[7]

Wang H, Liu J, Wen G, et al. The robust fail-safe topological designs based on the von Mises stress. Finite Elements in Analysis and Design, 2020, 171: 103376 doi: 10.1016/j.finel.2019.103376

[8]

Du JZ, Meng FW, Guo YH, et al. Fail-safe topology optimization of continuum structures with fundamental frequency constraints based on the ICM method. Acta Mechanica Sinica, 2020, 36(5): 1065-1077 doi: 10.1007/s10409-020-00988-7

[9]

Kranz M, Lüdeker JK, Kriegesmann B. An empirical study on stress-based fail-safe topology optimization and multiple load path design. Structural and Multidisciplinary Optimization, 2021, 64(4): 2113-2134 doi: 10.1007/s00158-021-02969-1

[10]

Hederberg H, Thore CJ. Topology optimization for fail-safe designs using moving morphable components as a representation of damage. Structural and Multidisciplinary Optimization, 2021, 64(4): 2307-2321 doi: 10.1007/s00158-021-02984-2

[11]

Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically?a new moving morphable components based framework. Journal of Applied Mechanics, 2014, 81(8): 081009

[12]

Li L, Liu C, Zhang W, et al. Combined model-based topology optimization of stiffened plate structures via MMC approach. International Journal of Mechanical Sciences, 2021, 208: 106682 doi: 10.1016/j.ijmecsci.2021.106682

[13]

李佳霖, 赵剑, 孙直等. 基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计. 力学学报, 2022, 54(1): 244-251 (Li Jialin, Zhao Jian, Sun Zhi, et al. Lightweight design of transmission frame structures for launch vehicles based on moving morphable components (MMC) approach. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 244-251 (in Chinese) doi: 10.6052/0459-1879-21-309

Li Jialin, Zhao Jian, Sun Zhi, et al. Lightweight design of transmission frame structures for launch vehicles based on moving morphable components (MMC) approach. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 244-251(in Chinese) doi: 10.6052/0459-1879-21-309

[14]

Dou S, Stolpe M. On stress-constrained fail-safe structural optimization considering partial damage. Structural and Multidisciplinary Optimization, 2021, 63(2): 929-933 doi: 10.1007/s00158-020-02782-2

[15]

冯佳, 吴艳发, 邱文科等. 基于双向渐进结构优化法的“破损-安全”结构轻量化设计. 固体力学学报, 2023, 44(1): 70-83

Feng Jia, Wu Yanfa, Qiu Wenke, et al. Design of lightweight and fail-safe structures using bi-directional evolutionary structural optimization method. Chinese Journal of Solid Mechanics, 2023, 44(1): 70-83 (in Chinese)

[16]

罗阳军, 亢战. 连续体结构非概率可靠性拓扑优化. 力学学报, 2007, 23(1): 125-131 (Luo Yangjun, Kang Zhan. Non-probabilistic reliability-based topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 125-131 (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.01.017

Luo Yangjun, Kang Zhan. Non-probabilistic reliability-based topology optimization of continuum structures. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(1): 125-131(in Chinese) doi: 10.3321/j.issn:0459-1879.2007.01.017

[17]

付志方, 赵军鹏, 王春洁. 多工况线性结构稳健拓扑优化设计. 力学学报, 2015, 47(4): 642-650 (Fu Zhifang, Zhao Junpeng, Wang Chunjie. Robust topology optimization design of structures with multiple-uncertainty load cases. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650 (in Chinese) doi: 10.6052/0459-1879-15-072

Fu Zhifang, Zhao Junpeng, Wang Chunjie. Robust topology optimization design of structures with multiple-uncertainty load cases. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 642-650(in Chinese)) doi: 10.6052/0459-1879-15-072

[18]

王栋. 载荷作用位置不确定条件下结构动态稳健性拓扑优化设计. 力学学报, 2021, 53(5): 1439-1448 (Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448 (in Chinese) doi: 10.6052/0459-1879-21-009

Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448(in Chinese) doi: 10.6052/0459-1879-21-009

[19]

李冉, 刘书田. 考虑表面层厚度不确定的稳健性拓扑优化方法. 力学学报, 2021, 53(5): 1471-1479 (Li Ran, Liu Shutian. Robust topology optimization of structures considering the uncertainty of surface layer thickness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1471-1479 (in Chinese) doi: 10.6052/0459-1879-20-419

Li Ran, Liu Shutian. robust topology optimization of structures considering the uncertainty of surface layer thickness. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1471-1479(in Chinese) doi: 10.6052/0459-1879-20-419

[20]

Long K, Wang X, Du Y. Robust topology optimization formulation including local failure and load uncertainty using sequential quadratic programming. International Journal of Mechanics and Materials in Design, 2019, 15(2): 317-332 doi: 10.1007/s10999-018-9411-z

[21]

Martínez-Frutos J, Ortigosa R. Robust topology optimization of continuum structures under uncertain partial collapses. Computers & Structures, 2021, 257: 106677

[22]

Martínez-Frutos J, Ortigosa R. Risk-averse approach for topology optimization of fail-safe structures using the level-set method. Computational Mechanics, 2021, 68(5): 1039-1061 doi: 10.1007/s00466-021-02058-6

[23]

Cid C, Baldomir A, Hernández S. Probability-damage approach for fail-safe design optimization (PDFSO). Structural and Multidisciplinary Optimization, 2020, 62(6): 3149-3163 doi: 10.1007/s00158-020-02660-x

[24]

Wang F, Lazarov BS, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 2011, 43(6): 767-784 doi: 10.1007/s00158-010-0602-y

[25]

Kreisselmeier G, Steinhauser R. Application of vector performance optimization to a robust control loop design for a fighter aircraft. International Journal of Control, 1983, 37(2): 251-284 doi: 10.1080/00207179.1983.9753066

[26]

Meng Z, Pang Y, Pu Y, et al. New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties. Computer Methods in Applied Mechanics and Engineering, 2020, 363: 112886 doi: 10.1016/j.cma.2020.112886

[27]

Yang B, Cheng C, Wang X, et al. Reliability-based topology optimization of piezoelectric smart structures with voltage uncertainty. Journal of Intelligent Material Systems and Structures, 2022, 33(15): 1975-1989 doi: 10.1177/1045389X211072197

[28]

Wang X, Meng Z, Yang B, et al. Reliability-based design optimization of material orientation and structural topology of fiber-reinforced composite structures under load uncertainty. Composite Structures, 2022, 291: 115537 doi: 10.1016/j.compstruct.2022.115537

[29]

Tu J, Choi KK, Park YH. A new study on reliability-based design optimization. Journal of Mechanical Design, 1999, 121(4): 557-564 doi: 10.1115/1.2829499

[30]

Luo Y, Zhou M, Wang MY, et al. Reliability based topology optimization for continuum structures with local failure constraints. Computers & Structures, 2014, 143: 73-84

[31]

Maute K, Frangopol DM. Reliability-based design of MEMS mechanisms by topology optimization. Computers & Structures, 2003, 81(8-11): 813-824

[32]

Svanberg K. The method of moving asymptotes?a new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207

首页 |杏悦介绍 |杏悦展示 |杏悦新闻 |杏悦登录 |杏悦代理 |杏悦招商 |杏悦平台 |杏悦APP下载 |联系我们

13988889999

Copyright © 2012-2018 首页-杏悦-杏悦注册站 版权所有

地址:海南省海口市玉沙路58号电话:0898-88889999手机:13988889999

ICP备案编号:琼ICP备88889999号

微信扫一扫

微信扫一扫

>

平台注册入口