服务热线:13988889999

站内公告:

诚信为本:市场永远在变,诚信永远不变。
MegEngine 使用小技巧:使用 Optimizer 优化参数

你的位置: 首页 > 杏悦新闻

MegEngine 使用小技巧:使用 Optimizer 优化参数

2024-09-09 13:03:45  点击量:

神经网络的学习的目的是找到使损失函数的值尽可能小的参数。这是寻找最优参数的问题,解决这个问题的过程称为优化(optimization)。而由于参数空间复杂、参数数量庞大等原因,使得神经网络的优化问题非常难。

MegEngine 的 optimizer 模块中实现了大量的优化算法, 其中 Optimizer 是所有优化器的抽象基类,规定了必须提供的接口。 同时为用户提供了包括 SGD, Adam 在内的常见优化器实现。 这些优化器能够基于参数的梯度信息,按照算法所定义的策略对参数执行更新。

以 SGD 优化器为例,优化神经网络模型参数的基本流程如下:


  • 我们需要构造一个优化器,并且传入需要被优化的参数 Parameter;

  • 在反向传播,计算出梯度后执行 step 方法,参数将基于梯度信息进行一次优化;

  • 通过执行 clear_grad 方法,清空参数的梯度。

为何需要手动清空梯度?

梯度管理器执行 backward 方法时, 会将当前计算所得到的梯度以累加的形式积累到原有梯度上,而不是直接做替换。 因此对于新一轮的梯度计算,通常需要将上一轮计算得到的梯度信息清空。 何时进行梯度清空是由人为控制的,这样可允许灵活进行梯度的累积。

Optimizer 构造函数中还可接受一个含有优化器默认参数的字典(如含有学习率、动量、权重衰减系数等等), 这些信息可以通过 state_dictload_state_dict 获取和加载。更多详细内容见:Optimizer 状态字典

「MegEngine 使用小技巧」系列文章,重点输出 MegEngine 及周边工具的使用技巧,如有催更或投稿,欢迎联系我们哦~

技术交流 QQ 群:1029741705;Bot 微信:megengine-bot

更多 MegEngine 信息获取,您可以:查看文档GitHub 项目。欢迎参与 MegEngine 社区贡献,成为 Awesome MegEngineer,荣誉证书、定制礼品享不停。

首页 |杏悦介绍 |杏悦展示 |杏悦新闻 |杏悦登录 |杏悦代理 |杏悦招商 |杏悦平台 |杏悦APP下载 |联系我们

13988889999

Copyright © 2012-2018 首页-杏悦-杏悦注册站 版权所有

地址:海南省海口市玉沙路58号电话:0898-88889999手机:13988889999

ICP备案编号:琼ICP备88889999号

微信扫一扫

微信扫一扫

>

平台注册入口